17. PIT for Depth-3 Circuits via the Sylvester–Gallai Theorem Tuesday, October 17, 2023 10:07 PM

We consider unbounded fam-in ZiTIZ christs:
[Virte poly-shee ZiTi divides completes
exactly sparse polynomids.]
This is difficult, so we add one constant: the top gate has fem-in k,
$$h=O(1)$$
.
The christ then computes
 $f(X_{1,...,}, X_{N}) = \sum_{i=1}^{n} F_{i}$, where $F_{i}=C_{i}$ if $l_{i;j}$, $deg(l_{i;j})=1$
 $Carge 1: k=1$. Then $f=c_{i}TI l_{i}$, $deg(l)=1$, $c\neq 0$, $(n-f=0)$.
 $f(n)\neq 0$ iff $l_{i}(n)=0$ for all i . Shee $F_{i}=C_{i}$ if $l_{i}(n)\neq 0$.
Then by the union band, $f_{i}(F_{i}(n)\neq 0)=0$.
 $f(n)\neq 0$ iff $l_{i}(n)=0$ for all i . Shee $F_{i}(X_{i},...,X_{n}]$ is an integral down in
So it suffices to constant a bitty set H set $p_{i}ZL(n)\neq 0$ $1-\frac{1}{2}$
 $e_{i}H$ if $H_{i}(n)=0$ for all i . Shee $F_{i}(X_{i},...,X_{n}]$ is an integral down in
So it suffices to constant a bitty set H set $p_{i}ZL(n)\neq 0$ $1-\frac{1}{2}$
 $e_{i}H$ if $e_{i}P_{i}=0$.
 $for all i .
Then by the union band, $f_{i}F_{i}f(n)\neq 0$ $=0$.
 $f_{i}=1$ if $f_{i}X_{i}\cdots X_{n}$ is a unique factorization down in $(U \neq D)$.
 $i \in for any two factorizations $f=cf_{i}\cdots f_{i}=cf_{i}\cdots f_{i-1}$ $h'_{i}S$ and $f_{i}S$.
For $f: C_{i}TL_{i}$, $i \in I_{i}$ for $see Ce F_{i}$. So we redue to the case kq .
 $f_{i}X_{i}\cdots F_{i}$. Then $f=2C_{i}T_{i}$ for see $Ce F_{i}$. So we redue to the case kq .
 $(e) F_{i} \to F_{i}$. Then the factorization of F_{i} and that $e_{i}F_{i}$ does not $hord h_{i}^{i}$.$$

(1) Fi
$$\downarrow$$
 Fi \downarrow Then the fact dention of Fi and that $a \not F_{i}$ about instead.
(2) Fi \downarrow Fi \downarrow Fi \downarrow Then the fact dention of Fi and that $a \not F_{i}$ about instead.
Make substitutions $T_{i} \times : \longrightarrow \mathcal{N}_{i}^{1}(15.2, \mathcal{N}_{i}, \mathcal{S}_{i} \in \mathbb{F}^{i})$
We want A_{i} $(f_{i})(f_{i} \times 2, \cdots, \mathcal{N}_{i})(f_{i})(f_{i})(f_{i} \times 2, \cdots, \mathcal{N}_{i})(f_{i})($

$$\frac{1}{12} + \frac{1}{12} + \frac{1}{12}$$

Then one of the following 's time : (1)] jurijky st. V(L,) A-- AV(L,) \$ V(F_k) or equivalantly, V(F,) M. MV(F,) \$ V(Fk). (2) tradeg_E(l_{1,j}: 14:ek, 14jed:) = O_{k,s}(1). trancendence degree If true, this will give deterministic poly-three black-box PIT algorithms for f of the above form.